DGSAN: Discrete generative self-adversarial network
نویسندگان
چکیده
Although GAN-based methods have received many achievements in the last few years, they not been entirely successful generating discrete data. The most crucial challenge of these is difficulty passing gradient from discriminator to generator when outputs are discrete. Despite fact that several attempts made alleviate this problem, none existing improved performance text generation compared with maximum likelihood approach terms both quality and diversity. In paper, we proposed a new framework for data by an adversarial which there no need pass generator. method has iterative manner each defined based on discriminator. It leverages discreteness model real distribution implicitly. Moreover, supported theoretical guarantees, experimental results generally show superiority DGSAN other popular or recent sequential
منابع مشابه
Wasserstein Generative Adversarial Network
Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...
متن کاملControllable Generative Adversarial Network
Although it is recently introduced, in last few years, generative adversarial network (GAN) has been shown many promising results to generate realistic samples. However, it is hardly able to control generated samples since input variables for a generator are from a random distribution. Some attempts have been made to control generated samples from GAN, but they have shown moderate results. Furt...
متن کاملGANGs: Generative Adversarial Network Games
Generative Adversarial Networks (GAN) have become one of the most successful frameworks for unsupervised generative modeling. As GANs are difficult to train much research has focused on this. However, very little of this research has directly exploited gametheoretic techniques.We introduce Generative Adversarial Network Games (GANGs), which explicitly model a finite zero-sum game between a gene...
متن کاملCapsuleGAN: Generative Adversarial Capsule Network
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates th...
متن کاملDifferentially Private Generative Adversarial Network
Generative Adversarial Network (GAN) and its variants have recently attracted intensive research interests due to their elegant theoretical foundation and excellent empirical performance as generative models. These tools provide a promising direction in the studies where data availability is limited. One common issue in GANs is that the density of the learned generative distribution could conce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2021
ISSN: ['0925-2312', '1872-8286']
DOI: https://doi.org/10.1016/j.neucom.2021.03.097